
FINE TUNING OF PHYLIP ON INTEL XEON

ARCHITECTURE

Prinkesh Sharma1, Kondorpa Kumar Borchetia2, Shivam Saxena3

1,2,3Dept. of Computer Science & Engineering,

National Institute of Technology Silchar-788010, India

Sumeet Singh Bhambrah4, Anneswa Ghosh5 andJoydeep Chakraborty6

4,5,6Dept. of Computer Science & Engineering,

National Institute of Technology Silchar-788010, India

Abstract -Computational Science is witnessing an exceptional growth over the years, but we are still lacking in efficient
programming to effectively optimize these computations. In today's modern world, computations need to be done and results
delivered in the least possible time. Porting, optimization, scaling and tuning of existing High Performance Computing (HPC)
Applications on hybrid architectures is the norm for reaping the benefits of extreme scale computing. That being said, we
must remember that the real gist in optimizing computations lies in properly tuning the core source code running on a single
processor or a shared memory model within a node. This paper gauges the performance of PHYLIP application on Intel
Xeon Processor.

Keywords - High Performance Computing,Parallel Programming,Optimization,Phylogenetic

I. INTRODUCTION

HPC systems are becoming challenging in terms
of speedup and scalability. This ever increasing
complexity demands well-organized and flexible
numerical algorithms to achieve high performance
computing. The size of compute intensive problems also
increases as the computing technology advances. In order
to effectively gain performance, the basic serial code
running on a single processor or shared memory model
must be properly tuned using efficient optimization
techniques.

Increases in the quantity of molecular sequence
data available for analysis, with over 1,000 complete
genomes available at NCBI's Genome Project Resource,
has brought with it both the ability and need to perform
phylogenetic analyses on larger, more complex data sets.
PHYLIP package is intended for phylogenetic studies of
protein and DNA sequences which provide unique and
valuable insights into the molecular and genetic basis for
important medical and epidemiological problems [1,2] as
well as important questions about the origins and
development of physiological features in present day
organisms [3,4].

In this paper, we have explored the possibilities
of optimizing the proml program in the PHYLIP package
when executed on an Intel Xeon processor. Optimization
of proml was taken more into consideration because of
large time required by this code for large datasets. [5]

A. About PHYLIP

PHYLIP is a comprehensive phylogenetic analysis
package created by Joseph Felsenstein at the University of
Washington. The PHYLIP package is one of the most
comprehensive sets of tools freely available for use in
phylogenetic studies [6]. This package can do many of the
phylogenetic analyses available in today's world. The
package consists of methods like parsimony and distance
matrix as well as likelihood methods. Molecular
sequences, restriction sites, gene frequencies, distance
matrices and 0/1(binary) discrete characters are the data
types that can be handled by PHYLIP.

1) Installation: PHYLIP is freely available
from:http://evolution.genetics.washington.edu/phylip.ht
ml.It ships with a comprehensive manual covering the
usage of different programs. The manual can be read
from a web browser as the manual is written in HTML
format .For Windows users, installation is simple.One
must download the three zip-files (phylip.exe,
phylipwx.exe, phylipwy.exe), and extract them to a
preferred folder. The subfolder exe contains all the
programs. Manual can be found from the subfolder doc.

For Macintosh OS X you may download the
packaged disk image (Phylip3.66.dmg). It is compressed,
so you need to expand it, and copy the resulting folder to a
desired location. Alternatively, you may compile the
programs from their sources as outlined in the UNIX
installation below. There are source codes and readymade
compilations available for older Macintosh systems.

Prinkesh Sharma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2587-2592

www.ijcsit.com 2587

Installation for UNIX systems is also quite straight
forward. These instructions apply for RedHat
systems. Installation on main frame can require tweaking
of the Makefile. Download the source code and
documentation package (phylip-3.66.tar.gz) i
folder. Unzip the package with gzip utility (gzip
phylip-3.66.tar.gz) and expand the tar ball (tar xvf phylip
3.66.tar). Move to the newly formed folder containing the
source codes (cd phylip3.6/src). The folder contains a file
called Makefile. Installation of the PHYLIP programs is
done simply by typing make install. The default Makefile
usually works fine.

2) User Interface: PHYLIP has a menu driven user
interface, which allows the user to set the options and start
computation. The data are fed into the program from a
text file, which can be prepared using any word processor
or text editor (but it is crucial that the text file is not in the
special format of that word processor – instead, it should
be in flat ASCII or Text Only format). Clus
Coffee are some sequence alignment programs that can
write data files in the PHYLIP format. Most of the
programs search for the data in a file called infile. In case
this file is not found, then, they then ask the user to type in
the file name of the data file. Output is written onto
special files like outfile and outtree. Trees written onto
outtree are in the Newick format, an informal standard
agreed to in 1986 by authors of a number of major
phylogeny packages (Felsenstein, PHYLIP
documentation).

3) Running Phylip Programs: The programs are
used sequentially. The output from the first program is fed
as an input to the next program. The trick lies in knowing
how to use the programs in suitable combinations. Most
PHYLIP programs run in similar manner. The input for a
program is taken from the infile. If the program is unable
to find the infile, it then requests the user to type in the
file name of the data file. The outputs are written in a file
called outfile. Some programs may produce both:
and a file called out tree or plot file. Because most
programs use default names for input and output files, the
user needs to be sure to rename the files which have to be
saved before proceeding, else there is a risk losing the
results.

The following data flow charts describe some basic
analyses:

II. EXPERIMENT IN DETAIL

nstallation for UNIX systems is also quite straight-
apply for RedHat-based Linux

systems. Installation on main frame can require tweaking
of the Makefile. Download the source code and

3.66.tar.gz) into a suitable
folder. Unzip the package with gzip utility (gzip –d

3.66.tar.gz) and expand the tar ball (tar xvf phylip-
3.66.tar). Move to the newly formed folder containing the
source codes (cd phylip3.6/src). The folder contains a file

efile. Installation of the PHYLIP programs is
install. The default Makefile

PHYLIP has a menu driven user
interface, which allows the user to set the options and start

fed into the program from a
text file, which can be prepared using any word processor
or text editor (but it is crucial that the text file is not in the

instead, it should
be in flat ASCII or Text Only format). ClustalX and T-
Coffee are some sequence alignment programs that can
write data files in the PHYLIP format. Most of the
programs search for the data in a file called infile. In case
this file is not found, then, they then ask the user to type in

f the data file. Output is written onto
special files like outfile and outtree. Trees written onto
outtree are in the Newick format, an informal standard
agreed to in 1986 by authors of a number of major
phylogeny packages (Felsenstein, PHYLIP

The programs are
used sequentially. The output from the first program is fed
as an input to the next program. The trick lies in knowing
how to use the programs in suitable combinations. Most

er. The input for a
f the program is unable

to find the infile, it then requests the user to type in the
file name of the data file. The outputs are written in a file
called outfile. Some programs may produce both: outfile
and a file called out tree or plot file. Because most
programs use default names for input and output files, the
user needs to be sure to rename the files which have to be
saved before proceeding, else there is a risk losing the

wing data flow charts describe some basic

Fig 1 Program sequence

Maximum likelihood analysis for DNA sequences
depicted in flow chart A.
Analysis using Neighbour joining method for DNA
sequences is depicted in flow chart B.
Bootstrapping analysis for DNA sequences using
maximum likelihood as the analysis method
flow chart C.

4) Methods Used for Optimization
analysed for finding out time and space consuming
hotspots using profilers (gprof,etc) and Intel Vtune
Amplifier XE. Once profiling is done and hotspots
identified, we use different optimization techniques in
these regions and try to maximize the performance of the
program.

Uniprocessor optimization can be done by
implementing techniques like Loop Unrolling, better
Cache Hit, Loop Fusion, Loop Splitting, In
functions.Thread level parallelism can be implemented by
using OpenMP. OpenMP is an Application Program
Interface (API) that maybe used to explicitly direct multi
threaded, shared-memory parallelism.

5) Hardware and Software Configuration

TABLEI
Hardware Configuration

Sr. No. Cluster
Parameter

1 CPU

2 RAM

3 Cores

4 OS

5 Thread/Core

6 Nodes

TABLE II
Software Configuration

Sr.
No.

Name Description

1 Intel Compiler composer_xe_2013_sp1.2.144

2 Intel MPI
Library

4.1.3.048

3 Intel
VtuneAnalyzer

2013.1.046

4 PHYLIP Ver 3.695

equence

analysis for DNA sequences is

ining method for DNA

ootstrapping analysis for DNA sequences using
maximum likelihood as the analysis method is depicted in

ptimization: The code is
analysed for finding out time and space consuming

) and Intel Vtune
Amplifier XE. Once profiling is done and hotspots
identified, we use different optimization techniques in
these regions and try to maximize the performance of the

Uniprocessor optimization can be done by
ike Loop Unrolling, better

Loop Fusion, Loop Splitting, Inlining
functions.Thread level parallelism can be implemented by
using OpenMP. OpenMP is an Application Program
Interface (API) that maybe used to explicitly direct multi-

Hardware and Software Configuration:

Hardware Configuration

Host Node
Configuration

Intel(R) Xeon(R)
E5-2650 v2

64 GB

16

GNU/Linux
2.6.32-

358.el6.x86_64
1

1

Software Configuration

Description

composer_xe_2013_sp1.2.144

4.1.3.048

2013.1.046

Ver 3.695

Prinkesh Sharma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2587-2592

www.ijcsit.com 2588

We have focused our work mostly on the proml
program.Proml is a compute intensive protein maximum
likelihood program [5], a part of PHYLIP
maximize the scalability and performance of this code on
multi-processor systems and hybrid systems, it is required
to optimize and maximize its performance on
uniprocessor system or shared memory model system.

A. Dataset

The test datasets (containing 1,000 bootstrap
replicates generated with the PHYLIP seqboot
used to illustrate the performance of the parallel codes are:
1) a 375 residue, single-gene alignment of cytochrome B
from the mitochondrial genome from thirteen species of
plasmodium (1/13); 2) a 375 residue, single
alignment of cytochrome B from the mitochondrial
genome from twenty five species of plasmodium (1/25);
3) a 1139 residue, three-gene alignment consisting of the
cytochrome B, cytochrome oxydase 1, and cytochrome
oxydase 3 genes from the mitochondrial genome from
twenty five species of plasmodium (3/25); 4) a 389
residue single gene alignment of 60 ABCG transporters

Benchmarking of the Proml Code on Intel(R) Xeon(R) E5

Code Version

Dataset1

Without optimization 976

After Uniprocessor
Optimization

573.538

Fig. 2 Speed up on uniprocessor optimization

sed our work mostly on the proml
program.Proml is a compute intensive protein maximum

PHYLIP package. To
maximize the scalability and performance of this code on

d hybrid systems, it is required
to optimize and maximize its performance on

em or shared memory model system.

The test datasets (containing 1,000 bootstrap
replicates generated with the PHYLIP seqboot program)
used to illustrate the performance of the parallel codes are:

gene alignment of cytochrome B
from the mitochondrial genome from thirteen species of
plasmodium (1/13); 2) a 375 residue, single-gene

B from the mitochondrial
genome from twenty five species of plasmodium (1/25);

gene alignment consisting of the
cytochrome B, cytochrome oxydase 1, and cytochrome
oxydase 3 genes from the mitochondrial genome from

es of plasmodium (3/25); 4) a 389
residue single gene alignment of 60 ABCG transporters

from a variety of species (1/60); and 5) a 356 residue,
single gene alignment from a set of 121 g
inhibitory subunits from fungi (1/121)

B. Phases of Experiment

1) Profiling and Analysis of Code
proml code using Intel Vtune Amplifier XE.

We obtain the hotspots, which are regions of significant
activity, and are more time consuming.

2) Uniprocessor optimization
optimizations were carried on the hotspur regions
obtained in phase 1. The hotspots were optimiz
access memory in a cache optimiz
increasing cache hit resulting into better performance of
code. Complex Mathematical formulas, which previously
were calculated using loops, were modified such that
now they were calculated using less nesting of loops
hence increasing the performance further.

TABLE III

l(R) Xeon(R) E5-2650 v2 CPU of Frequency 2.60GHz, ie. Ivy Bridge Architecture
Thread Enabling)

Execution times (seconds)

Dataset1 Dataset2 Dataset3 Dataset4

334.33 7.846 33.718

573.538 203.927 5.501 22.579

The code performance of proml programs run with
default parameters is summarised in Figure
that an average speed-up of 1.5 was obtained when the
proml code was executed for all the test data.

3) Thread Level Parallelism Using OpenMP
doing the uniprocessor optimizations, our goal was to
introduce parallelism wherever we could w
the output of the code. Parallelism was implemented
OpenMP wherever it was suitable and efficient.
proml code was executed for all the datasets varying the
number of threads from 1 to 16.

ptimization

from a variety of species (1/60); and 5) a 356 residue,
single gene alignment from a set of 121 g-protein alpha

ode: We analysed the
proml code using Intel Vtune Amplifier XE.

We obtain the hotspots, which are regions of significant
activity, and are more time consuming.

Uniprocessor optimization: Uniprocessor
carried on the hotspur regions
The hotspots were optimized to

access memory in a cache optimized manner hence
nto better performance of

Complex Mathematical formulas, which previously
were modified such that

now they were calculated using less nesting of loops
hence increasing the performance further.

Architecture without HT (Hyper

Dataset5

42.582

25.731

The code performance of proml programs run with
default parameters is summarised in Figure 2.We can infer

up of 1.5 was obtained when the
proml code was executed for all the test data.

Thread Level Parallelism Using OpenMP: After
doing the uniprocessor optimizations, our goal was to
introduce parallelism wherever we could without affecting

was implemented using
OpenMP wherever it was suitable and efficient. The

for all the datasets varying the

Prinkesh Sharma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2587-2592

www.ijcsit.com 2589

TABLE IV

Benchmarking of the Proml Code on Intel(R) Xeon(R) E5-2650 v2 CPU of Frequency 2.60GHz,
ie. Ivy Bridge Architecture without HT (Hyper Thread Enabling) by Varying Number of Threads.

Figure 3 shows that the performance of code is
enhanced up to 233 % when the number of threads is
increased to 4-8 and further increase in number of threads
doesn't lead to any significant performance enhancement
or degradation. Thus, optimal usage of CPU is obtained
when the code is used with 4-8 numbers of threads.

Speed-up of optimized code w.r.t Original Code
can be defined as the ratio of Execution time of original
code to the Execution time of optimized code run on “n”
threads.

Fig 3 Analysis of execution time on all datasets w.r.t increase in number of threads

0

200

400

600

800

1000

1200

1 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6

EX
EC

U
TI

O
N

 T
IM

E
(S

EC
O

N
DS

)

NUMBER OF THREAD(S)

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

Code Version
Origin

al
Code

OpenMP and Uniprocessor optimizations implemented and executed taking “n” number of
threads (Approximate time)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
xe

cu
ti

on
 t

im
e

(s
ec

on
d

s)

Datase
t 1

976 57
6

44
6

34
6

32
4

30
1

29
7

28
5

28
2

27
9

27
9

28
2

27
9

28
2

27
8

28
2

28
4

Datase
t 2

334.33 20
4

15
3

12
3

11
2

10
7

10
7

10
0

10
1

98 99 99 98 98 98 10
1

10
1

Datase
t 3

7.846 6 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Datase
t 4

33.718 23 19 15 13 13 13 12 13 12 12 12 12 12 12 12 12

Datase
t 5

42.582 26 20 18 17 17 17 17 17 18 17 17 18 18 19 19 18

Prinkesh Sharma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2587-2592

www.ijcsit.com 2590

Fig. 4 Speed up

The fig 4 shows the speed-up of optimized code
with respect to the original code. For example, for the
dataset1, a speed-up of 3.5 is obtained when executed
with 10 threads means that it will take 3.5 time
time than the execution time of original code.

After analysing Figure 4, we can infer that with
increasing number of threads the speed
increases and then attains a stable value in the range 2.3 to
3.5. Thus a better performance is achieved as compared to
performance of Uniprocessor optimization (Refer:
Speed-up obtained by execution on “n” threads w.r.t
execution time on 1 thread can be defined as the ratio of
Execution time on 1 thread to the Execution time on n
threads.

Fig 5 Speed up w.r.t to u

0

0.5

1

1.5

2

2.5

3

3.5

4

1 1 2 3 4

Sp
ee

d-
up

 w
.r.

t.
O

rig
in

al
 C

od
e

dataset1

0

0.5

1

1.5

2

2.5

1 2 3 4 5

Sp
ee

d-
up

 w
.r.

t.
ex

ec
ut

io
n

on
 1

 th
re

ad

dataset1

Fig. 4 Speed up w.r.t original code

up of optimized code
with respect to the original code. For example, for the

up of 3.5 is obtained when executed
with 10 threads means that it will take 3.5 times lesser
time than the execution time of original code.

, we can infer that with
increasing number of threads the speed-up gradually
increases and then attains a stable value in the range 2.3 to

ieved as compared to
performance of Uniprocessor optimization (Refer: Fig 2).

up obtained by execution on “n” threads w.r.t
execution time on 1 thread can be defined as the ratio of
Execution time on 1 thread to the Execution time on n

The fig 5 shows the speed-
optimized code when executed on “n” threads with
respect to the execution of optimized code executed on
single thread.For example, for the dataset1, a speed
2 is obtained when executed with 10 threads means th
will take 2 times lesser time than the execution time of
optimized code executed on single thread.

After analysing Fig 5, we can infer that the code
is scalable up to 200% and the speed up in performance
becomes stable when the number of threads is i
8-9 and further increase in threads results is no significant
change.

Fig 5 Speed up w.r.t to uniprocessor optimized code

5 6 7 8 9 10 11 12 13 14

Number of thread(s)
dataset2 dataset3 dataset4 dataset5

5 6 7 8 9 10 11 12 13 14

Number of thread(s)

dataset2 dataset3 dataset4 dataset5

-up of execution of
optimized code when executed on “n” threads with
respect to the execution of optimized code executed on
single thread.For example, for the dataset1, a speed-up of
2 is obtained when executed with 10 threads means that it
will take 2 times lesser time than the execution time of
optimized code executed on single thread.

, we can infer that the code
is scalable up to 200% and the speed up in performance
becomes stable when the number of threads is increased to

9 and further increase in threads results is no significant

15 16

15 16

Prinkesh Sharma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2587-2592

www.ijcsit.com 2591

III. CONCLUSIONS

From the above experiments it is concluded
that a significant improvement of more than 200% is
in achieved in performance of the the proml program
of the PHYLIP package and the performance can be
enhanced further by increasing the number of threads
upto a certain point after which the performance
enhancement more or less remains the same.

IV. FUTURE WORK

The current optimization of PHYLIP
application is limited to promlonly; whereas it has
more than 30 other programs for DNA sequences,
discrete characters, tree plotting, gene frequencies etc.
The application can be ported onto Intel Xeon Phi
MIC coprocessor and benchmark the performance of
the PHYLIP application on Xeon Phi.There is also a
possibility of taking the input data directly from the
memory rather than reading the data file each time,
which will affect the run time of the application in a
very crucial manner. As observed, the output file is
much larger than the input file given. Sometimes the
output file has become 10 to 100 times larger than the
given input file. Some compression algorithm may be
applied to these output files in order to make them less
memory consuming, as the compression can be
obtained as the cost of CPU time.

ACKNOWLEDGEMENTS

We would like to extend our gratitude to Dr
P.K. Sinha (Sr. Director Strategy, R&D, Centre for
Development of Advanced Computing, Pune, India),
Mr Abhishek Das,Mr.ManjunathaValmiki,
Mrs.Shweta Das and the C-DAC members at NIT
Silchar for their cordial support, valuable information
and guidance provided by them, which helped us in
moving ahead with this task through various stages.
We are also very grateful for their cooperation during
the period of our research. We would also like to
thank Mr.B.Dey sir for his valuable advices and
support.

REFERENCES

[1] Sheps JA, Ralph S, Zhao Z, Baillie DL, Ling V (2004)
The ABC transporter gene family of
Caenorhabditiselegans has implications for the
evolutionary dynamics of multidrug resistance in
eukaryotes. Genome Biol 5: R15.

[2] Bridgham JT, Carroll SM, Thornton JW (2006)
Evolution of HormoneReceptor Complexity by
Molecular Exploitation. Science 312: 97–101.

[3] Durand D, Hoberman R (2006) Diagnosing
duplications–can it be done? Trends Genet 22: 156–164.

[4] Darling AE, Miklo´ s I, Ragan MA (2008) Dynamics of
Genome Rearrangement in Bacterial Populations. PLoS
Genet 4: e1000128. doi:10.1371/journal. pgen.1000128.

[5] Alexander J. Ropelewskimail,Hugh B. Nicholas
Jr,RicardoR.Gonzalez Mendez (2010, 15 Nov) MPI-
PHYLIP: Parallelizing Computationally Intensive
Phylogenetic Analysis Routines for the Analysis of
Large Protein Families

[6] Felsenstein, J. (1981). "Evolutionary trees from DNA
sequences: A maximum likelihood approach”.

Prinkesh Sharma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2587-2592

www.ijcsit.com 2592

